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Abstract
The calculation of dynamic properties of physical systems requires the
knowledge of their total energy as a function of their configuration. In this
paper we review some techniques for making this evaluation feasible in liquid
systems, in particular liquid metals, through the use of pseudopotentials, and
we also discuss how to construct the pseudopotentials in order to optimize their
use within approximate theories for the total energy. Some results are given for
pure metals and alloys.

1. Introduction

From a fundamental point of view, ordinary matter is composed by atomic nuclei and electrons
interacting through electromagnetic forces. However, in many situations it is enough to
consider just electrostatic Coulomb interactions to obtain an accurate description of a physical
system. Furthermore, in atoms, molecules, and also condensed matter phases, the electrons
can be divided into two categories: those tightly bound to the nucleus, referred to as core
electrons, and the others, not so tightly bound, which will be referred to as valence electrons.
When the environment of an atom changes, perhaps because of the presence of other interacting
atoms, the state of the valence electrons also changes, in some cases drastically (for instance
in a metal), whereas the core electrons are hardly affected and therefore in most cases they can
be considered to be chemically inert. Consequently, most properties of matter depend only on
the behaviour of the chemically active valence electrons.

The preceding argument shows that the potential felt by the valence electrons in a given
system plays a basic role in the determination of its properties. In fact, it is a rather peculiar
potential with a complicated behaviour in the core regions because of the interaction with
the nucleus and with the core electrons; moreover it diverges at the nuclear position due to
the nuclear attraction. On the other hand, the valence wavefunctions must oscillate inside
the core region, since they must be orthogonal to the core wavefunctions. This strong and
complicated character of the potential in the core region makes it rather difficult to perform
accurate calculations. Fortunately, most properties do not depend very strongly on this
complicated behaviour, because the important interaction among the different atoms of the
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system takes place where their valence wavefunctions overlap, and this is certainly outside the
core regions. So, it happens that the problematic core region is not really important for the
properties of interest.

The situation is made more tractable by introducing the so-called pseudopotential. This
is a potential which, in a certain sense, is equivalent to the real potential felt by the valence
electrons outside the cores, but which behaves very differently from the real potential inside
the core regions. In general, the pseudopotential is intended to be weak enough that it does
not bind any core electrons. In particular, close to the nucleus it will not be Coulombic any
more; moreover, as there are no core electrons, the corresponding wavefunctions (i.e., the
pseudowavefunctions) are smooth within the core, with no rapid oscillations, as opposed to
the true valence wavefunctions. The weakness of the pseudopotential and the smoothness of
the pseudowavefunctions are very convenient, for instance, in a perturbative calculation of
the total energy of a system, or in a calculation of the electronic states via an expansion in a
series of plane waves. On the other hand, the pseudopotential is constructed so as to have the
same energy spectrum as the true potential (except for the core states) with the same scattering
properties, and to give the same valence pseudowavefunctions as the true potential in the region
outside the cores (this is the meaning of the equivalence mentioned before).

These convenient properties of the pseudopotential are however somewhat outweighed
by its relative complexity. In its more general form, the pseudopotential is represented by a
non-local and energy-dependent operator. For instance, the orthogonalized plane-wave (OPW)
pseudopotential [1] acts on a wavefunction as

V OPW
ps |ψ〉 = V|ψ〉 +

∑
nlm;i

(E − Enlm;i )|ψnlm;i〉〈ψnlm;i |ψ〉

where V is the true potential felt by the electrons, and |ψnlm;i〉 and Enlm;i are the core
wavefunctions and energies with quantum numbers n, l, and m for the ion at position �Ri .

The OPW method is a rather standard method for computing the band structure of
a solid [1], where the valence band energies are obtained by diagonalization of the true
Hamiltonian (i.e. the one that includes the true crystal potential V), which is represented
in a basis set formed by functions called orthogonalized plane waves. However, it was realized
that these energies could also be interpreted as those obtained through the diagonalization of
the OPW pseudo-Hamiltonian (i.e. that including the OPW pseudopotential) represented in
the standard plane-wave basis set. Actually, this was the historical origin of the development
and use of pseudopotentials, in particular for the studies of metals.

In fact, the OPW expression for the pseudopotential is quite complicated, because of the
appearance of the true potential; moreover it describes the crystal potential. Later on, simpler
expressions were proposed [2, 3], which focused on the atomic pseudopotential; the crystal
pseudopotential is written as a superposition of the atomic ones. Those expressions adopted a
model approach, i.e., a model functional form was proposed that includes several parameters
which are then evaluated in order to reproduce some experimental properties. In particular the
Heine–Abarenkov model pseudopotential [2] is given by

vHA
ps (r) =




−Zv/r r > RM

−
∑
l

Al(E)Pl r < RM

where RM is a model radius, to be taken as greater than or equal to the core radius, Al(E) are
energy-dependent constants, and Pl is a projector operator, which picks out the lth angular
momentum component of the wavefunction. Shaw’s optimized model potential [3] allows an
l-dependent model radius RM(l) to be chosen so as to make the pseudopotential continuous
at RM(l).



Pseudopotentials for the calculation of dynamic properties of liquids 7803

The main idea behind these simpler expressions is that the form of the pseudopotential
inside the core does not matter, as long as it reproduces the scattering properties of the true
potential outside the core. Therefore, it is expected that by making a proper choice of the
parameters, these scattering properties can be conveniently recovered. In fact, the usual
practice was to fit the constants Al(E) so as to reproduce the experimental spectral properties
of the free ion in several electronic configurations and to use the pseudopotential obtained to
compute, for instance, the band structure of the crystal. However, changes of the parameters
were sometimes needed in order to obtain good agreement with experiment, giving rise to the
problem of the transferability of the pseudopotential from one environment to another. When
the fitting was performed on metals, the experimental Fermi surface was often used as an input.
However, due to crystal symmetry, the pseudopotential enters for wave vectors corresponding
to the reciprocal lattice only. Another piece of information useful for fitting was the phonon
spectrum of the crystalline metal; this has the advantage of involving the pseudopotential for
all wave vectors, not only those imposed by the crystal symmetry. This illustrates that dynamic
properties of the systems are useful in order to produce a good pseudopotential, or to decide
whether a given pseudopotential qualifies as good enough.

More recently, the construction of pseudopotentials has shifted again from modelling
towards ab initio construction. Much of the interest in the subject has emerged from the
development of ab initio methods, which rely on density functional theory, to perform
molecular dynamics simulations. In principle, these methods can provide a lot of information
(electronic, static, and dynamic properties) which enable a comparison with experiment and
therefore represent an important test of the quality of the pseudopotential.

In this contribution we focus on the dynamic properties of liquid metals, and their relation
to the pseudopotentials. In section 2 we briefly describe some dynamic properties of liquid
systems, as well as some available methods of calculation, in particular molecular dynamics
simulations. In advance, the evaluation of the total energy of the system is required, and in
section 3 we will discuss two methods for obtaining it (specifically for the case of simple
liquid metals and alloys), namely, linear response theory (perturbation theory) and density
functional theory. Both approaches make use of pseudopotentials in order to make the
computations feasible, and in section 4 we will describe several methods for constructing
convenient pseudopotentials which can describe the interactions between ions and valence
electrons. Finally, we will end up with some examples of the application of the present
formalism to study some dynamic properties of several pure metals (Li, Mg, Al) near their
respective triple points, and of one phase-separating binary alloy, LiNa, at a temperature and
concentration close to its upper consolute point, near the demixing region.

2. Dynamic properties of liquids

The basic magnitudes for describing the dynamic properties of a system are the time correlation
functions of several dynamic variables of the system. We will first define some dynamical
variables, and their correlation functions will be considered later. We will also briefly discuss
the behaviour of these correlation functions in different dynamic regimes and its relation to
experimental measurements.

2.1. Basic dynamic variables

The self-number density of particle j is defined as

ρs;j (�r, t) = δ(�r − �Rj(t)) (1)
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where �Rj(t) denotes the position of particle j at time t . Its associated space Fourier transform
(FT) will be denoted as ρs;j (�k, t)

The (collective) number density of particles of a given type is defined as the sum of
all the self-number densities of particles of that type. We will assume throughout that we are
dealing with one-component systems, although the generalization to multicomponent mixtures
is straightforward. Thus, the number density for a one-component system is defined as

ρ(�r, t) =
∑
j

δ(�r − �Rj(t)) (2)

and its space FT will be denoted as ρ(�k, t).
The current density of particles of a given type is also an important dynamic variable; it

is defined as

�j(�r, t) =
∑
j

�Vj (t)δ(�r − �Rj(t)) (3)

where �Vj (t) is the velocity of particle j at time t . In fact the particle velocity itself is also
an important dynamic variable which will be considered later on. The corresponding space
FT, �j(�k, t), is usually decomposed into a longitudinal (parallel to �k) component �jl(�k, t) and a
transverse (perpendicular to �k) component �jt (�k, t), with �j(�k, t) = �jl(k, t) + �jt (k, t).

There are also other dynamic variables related to the dynamic properties of a system, like
the stress tensor and the energy current density, that will not be discussed here. Instead, we
refer the reader to the many books and reviews on the subject; see, for instance, reference [4].

2.2. Correlation functions

The time correlation functions for dynamic variables are the basic magnitudes used to describe
the dynamic properties. Particularly important are the time autocorrelation functions of the
dynamic variables considered in the previous subsection.

The time autocorrelation function associated with ρs;j (�k, t) defines the self-intermediate-
scattering function

Fs(k, t) =
〈
ρs;j (�k, t + t0)ρs;j (−�k, t0)

〉
(4)

where, assuming that we are dealing with homogeneous and isotropic bulk system, the average
〈· · ·〉 is carried out over time origins t0, particles of the same type (i.e. all the particles) j , and
directions of the wave vector �k. The Fourier transform to real space of Fs(k, t) is the van
Hove self-function Gs(r, t), which is related to the probability that a given particle has moved
a distance r in a time interval t . On the other hand, the Fourier transform of Fs(k, t) into
the frequency domain is the self-dynamic structure factor Ss(k, ω), which is directly related
to the incoherent intensity obtained in an inelastic neutron scattering experiment; i.e. it is an
experimentally accessible property.

The intermediate-scattering function is defined as

F(k, t) = 1

N

〈
ρ(�k, t + t0)ρ(−�k, t0)

〉
(5)

where N is the number of particles, and the average is now over time origins t0 and over
directions of �k. For multicomponent mixtures the factor 1/N is replaced by 1/

√
NαNβ in the

definition of Fαβ(k, t), where α and β run from 1 to the number of different species and Nα is
the number of particles of species α. The Fourier transform to real space of F(k, t) is the van
Hove function G(r, t), which is related to the probability that if one particle is at the origin
at a certain time, then any particle (the same or a different one) will be at a distance r from
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the origin after a time interval t . The FT to the frequency domain of F(k, t) is the dynamic
structure factor S(k, ω), which is also experimentally accessible, since it is directly related to
the coherent intensity obtained in an inelastic neutron or x-ray scattering experiment.

The longitudinal and transverse current correlation functions are defined as

Cl(k, t) = 1

N

〈
�jl(�k, t + t0) · �jl(−�k, t0)

〉
(6)

Ct(k, t) = 1

2N

〈
�jt (�k, t + t0) · �jt (−�k, t0)

〉
. (7)

Due to its definition, the longitudinal current correlation function is directly related to the
intermediate-scattering function, or, in the frequency domain, to the dynamic structure factor:

Cl(k, t) = − 1

k2

d2F(k, t)

dt2
Cl(k, ω) = ω2

k2
S(k, ω) (8)

and can therefore be measured experimentally. The situation is however different for the
transverse current correlation function, which is not accessible to experiment.

Two further correlation functions, not directly accessible to experiment, are the velocity
autocorrelation function, Z(t), and the closely related mean square displacement, δr2(t), of a
given particle in the system:

Z(t) =
〈
�Vj (t + t0) · �Vj (t0)

〉
(9a)

δr2(t) =
〈∣∣∣ �Rj(t + t0)− �Rj(t0)

∣∣∣2
〉

= 2
∫ t

0
dτ (t − τ)Z(τ) (9b)

where, for a homogeneous bulk system, the average is over time origins and over particles of
the same type. Both functions are related to the diffusion coefficient, D, which is a measurable
quantity, either as the time integral ofZ(t) or as the slope of δr2(t) (divided by 6) at long times.

2.3. Dynamic regimes

Taking into account the relationship between the wave vector and the mean interparticle
distance d and between the frequency and the mean collision time τ , three dynamic regimes
can be considered.

(i) The hydrodynamic regime, characterized by kd 	 1 and ωτ 	 1. Now the wavelength
comprises many particles; the typical times involve many collisions and therefore the
situation can be described as the evolution of a continuum fluid, to which the hydro-
dynamic equations can be applied, leading to the following behaviour of the previous
correlation functions. The self-dynamic structure factor, Ss(k, ω), is a Lorentzian centred
atω = 0, with height 1/(πDk2), and its halfwidth at half-maximum isDk2. The dynamic
structure factor S(k, ω) is approximately the sum of three Lorentzians, one centred at
ω = 0 and two centred at ω = ±csk, with cs being the adiabatic sound velocity. These
side peaks represent longitudinal collective excitations in the liquid, and are interpreted
as sound propagation, being similar in character to phonons in solid systems. Cl(k, ω)

is just proportional to the dynamic structure factor multiplied by ω2, and therefore it has
side peaks representing longitudinal collective excitations. On the other hand Ct(k, ω) is
also a monotonically decaying Lorentzian centred at ω = 0, whose height and width are
related to the shear viscosity of the liquid. It does not have any side peaks and therefore
in this regime no transverse collective excitations are supported, contrary to the behaviour
in solid systems.
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(ii) The free-particle regime characterized by kd � 1 and ωτ � 1. Now, the wavelength
is much shorter than the mean interparticle distance and the typical time is much smaller
than the mean collision time. Therefore each particle practically does not feel the presence
of the others and the behaviour of the correlation functions is the following. The self-
dynamic structure factor and the dynamic structure factor coincide and are described by
a monotonically decaying Gaussian centred at ω = 0, whose height and width are related
to the thermal velocity, vth = √

kBT /m, where kB is the Boltzmann constant and T is the
temperature. No side peaks appear in S(k, ω) and consequently no longitudinal collective
excitations appear in this regime. Cl(k, ω), on the other hand, is again proportional to ω2

times a Gaussian, and this function does have side peaks, which have no physical meaning.
The transverse Ct(k, ω) is again a Gaussian showing no transverse collective excitations.

(iii) The kinetic regime, where kd ≈ 1 and ωτ ≈ 1. Now there is no simplifying assumption
and the correlation functions must be either calculated or measured (when possible). For
example, inelastic neutron scattering (INS) provides a linear combination of Ss(k, ω) and
S(k, ω) through the incoherent and coherent intensities whereas inelastic x-ray scattering
(IXS) is purely coherent and therefore provides direct information on the dynamic structure
factor S(k, ω). For the calculation of the correlation functions, two approaches can
be followed, namely molecular dynamics (MD) simulations and theoretical methods.
Nevertheless, the general shape of the correlation functions is as follows. Ss(k, ω) is
always a monotonically decaying function of ω, whose main features are embodied in its
height and width [5,6]. The dynamic structure factor may exhibit side peaks representing
longitudinal collective modes. The side peaks appear for a range of k-values depending
on the nature of the system. For instance, in liquid Ar the maximum k is around 0.07
kp [7,8] (kp is the main peak position of the static structure factor, S(k)) which means that
the minimum wavelength of the supported collective longitudinal excitations is around
12 times the mean interparticle distance. On the other hand, for liquid Rb the maximum
k is around 0.7 kp [7, 9], i.e., the minimum wavelength is around 1.2 times the mean
interparticle distance. The longitudinal current, Cl(k, ω), always shows side peaks which
do not always (as in the free-particle regime) represent real longitudinal collective modes.
Finally, Ct(k, ω) may or may not exhibit side peaks representing transverse collective
excitations. This is not a measurable function and only MD results are known. Usually
the transverse excitations appear only in a limited region of wave vectors depending on the
nature of the liquid. In liquid Ar the minimum k that supports transverse collective modes
is around 0.13 kp (note that in this case there is no range of k-values where longitudinal
and transverse excitations coexist), whereas in liquid Rb this minimum k is about 0.065 kp
(i.e., there is a large k-region where both transverse and longitudinal waves are supported,
in closer analogy to a solid system) [8].

2.4. Calculation of dynamic properties; MD simulations

All dynamic properties depend on the time evolution of the positions and velocities of the
particles; therefore, if these were known as a function of time, the dynamic properties could be
evaluated. MD simulations provide exactly this information, and therefore they are extremely
useful for the study of time-dependent properties. They even give information on magnitudes
which are not accessible to experiment. The way MD simulations work is extremely simple,
in principle. Given a set of N particles, and an initial configuration (positions and velocities)
{ �R1, �V1; �R2, �V2; . . . ; �RN, �VN }, the total potential energy is calculated, Epot( �R1, �R2, . . . , �RN),
and therefrom the force on each atom is obtained, �Fj = −�∇jEpot. Then, Newton’s equations
are numerically solved (they are second-order differential equations) to find the positions and
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velocities of the particles after a time interval, +t . For this new configuration the potential
energy and the forces are again evaluated and Newton’s equations solved to obtain the following
configuration after another time interval +t . This procedure is iterated for a given number of
configurations, Nit , leading finally to a set of values of positions and velocities of the particles
of the system at times tn = n+t , with n = 0, 1, . . . , Nit , from which the dynamic properties
are computed. When dealing with bulk systems, and in order to eliminate surface effects, the
particles are enclosed in a box (we assume it to be cubic, which is very usual) of volumeV = L3

so that the correct experimental density is obtained, and the box is repeated periodically,
leading to the so-called periodic boundary conditions. Periodic boundary conditions have two
important consequences on the structural quantities obtained in the simulation. First, the r-
dependent quantities are meaningful for distances smaller than L/2. Second, for k-dependent
properties, only those wave vectors compatible with the periodicity are allowed, i.e. �k must be
in the reciprocal lattice associated with the periodic boundary conditions imposed. In particular
the minimum k-value allowed in the simulation is 2π/L which makes it quite difficult to reach
the hydrodynamic regime. Finally, notice that the essential input to MD simulations is the
potential energy of the system as a function of its configuration. This potential energy is
computed within the Born–Oppenheimer approximation, in which the electrons are always in
the ground state, the ionic positions act as parameters in the electronic Hamiltonian, and the
electronic ground-state energy plays the role of an extra potential energy for the ions, to be
added to their direct interaction. Now, depending on how this electronic ground-state energy,
and thereforeEpot, is computed, the MD simulations can be classified into classical simulations
(CMD) and ab initio simulations (AIMD). In CMD the potential energy is usually written in
terms of n-body potentials, up to n = 2 (i.e. pair potentials) in most cases:

Epot({ �Rα}) = ϕ(0) +
∑
j

ϕ(1)( �Ri) +
1

2

∑
i �=j

ϕ(2)( �Ri, �Rj) (10)

although sometimes further terms are also included. In the case of simple liquid metals both
the ground-state energy and electronic density can be obtained by using linear response theory
(LRT), i.e. pseudopotential perturbation theory, up to first order for the electron density, up to
second order for the energy, taking as reference system a homogeneous electron gas (jellium).
The result for the potential energy is of the form exhibited in equation (10) but without one-
body terms. On the other hand, in AIMD the Epot depends parametrically on all the positions
of the ions, and is obtained, along with the ground-state electron density, by using density
functional theory (DFT), considering however only valence electrons and pseudopotentials to
describe their interactions with ions.

3. Potential energy calculation

We have seen that the potential energy is the key ingredient enabling the calculation of the
dynamic properties of the system. Although, in principle, an electronic theory such as DFT
can deal with core and valence electrons, in practice an explicit treatment of the core electrons
would be much too demanding; therefore usually only the valence electrons are explicitly
considered using pseudopotentials, while the inner-core electrons are joined to the nucleus to
form an ion. On the other hand, a perturbative theory like LRT requires that the perturbation
be weak and, given that the true potential is far from being weak, the use of pseudopotentials
becomes absolutely necessary.

In the following we will assume that the interaction between ions and valence electrons
can be described in terms of a local energy-independent pseudopotential. Although it is a
simplification, the following applications will show its ability to provide a proper description
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of several static and dynamic properties of different systems. Moreover, the equations to be
solved become simpler; however, we will indicate where the equations should be modified in
the case of non-local pseudopotentials (energy dependence will not be considered at all).

The total potential energy of a system of N ions of valence Z, enclosed in a volume
V , which interact with Ne = NZ valence electrons through a local pseudopotential v(r),
is written, within the Born–Oppenheimer approximation, as the sum of the direct ion–ion
interaction energy, which we assume Coulombic, and the ground-state energy of the electronic
system subject to the external potential created by the ions, Vext(�r, { �Rl}) = ∑N

i=1 v(|�r − �Ri |):

E({ �Rl}) =
∑
i<j

Z2

| �Ri − �Rj |
+ Eg[ρg(�r), Vext(�r, { �Rl})] (11)

where ρg(�r) is the ground-state electron density.

3.1. Linear response theory (for metals)

According to LRT, the ground-state electron density is given, in reciprocal space, by

ρLRT
g (�q) =

(∑
l

ei�q· �Rl

)
nLRT(q) ≡ F(�q)nLRT(q) (12)

nLRT(q) = χ(q, ρ0)v(q) (13)

where χ(q, ρ0) is the response function of a uniform electron gas of density ρ0 = Ne/V .
These equations imply that the ground-state electron density is a superposition of spherically
symmetric pseudoatomic densities around each ion, i.e.,

ρLRT
g (�r) =

∑
l

nLRT(|�r − �Rl|). (14)

The ground-state energy is also given as

ELRT
g = Ev[ρ0] +

∑
i<j

φind(Rij ; ρ0) (15)

where φind(q; ρ0) = χ(q, ρ0)v
2(q) and Ev is a structure-independent term. Therefore, the

total potential energy of equation (11) can be written, within LRT, as a sum of a structure-
independent term and a sum over pairs of an effective density-dependent pair potential
φeff(R; ρ0) = Z2/R + φind(R; ρ0). This leads to a picture of the metal as a collection
of pseudoatoms, made up by the ions and the associated electronic screening clouds n(r),
interacting through these state-dependent pair potentials.

For non-local pseudopotentials the final picture is the same, but the equations relating
the pseudopotential to the screening density, on one hand, and with the ground-state energy,
on the other, are more involved [10]. Moreover, an important difference is that for local
pseudopotentials there is a one-to-one correspondence between the screening electronic cloud,
n(q), and the induced interaction φind(q)—namely φind(q) = n(q)v(q); therefore, the electron
density determines uniquely the potential energy. However, for non-local pseudopotentials
this one-to-one correspondence is not guaranteed, so there could be different non-local
pseudopotentials leading to the same electron density but with different potential energies [11].

3.2. Density functional theory

We will briefly comment on some aspects of DFT, and for further details the reader is referred
to the original paper or some of the books and reviews on the subject [12]. When a system ofNe

interacting electrons is placed in an external potential Vext (usually created by the ions) then its
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ground state can be obtained by finding the lowest eigenvalue and corresponding eigenvector
of the Hamiltonian. By solving the associated time-independent Schrödinger equation, the
ground-state energyEg , the ground-state wavefunctionψg(�r1, s1; �r2, s2; . . . ; �rNe

, sNe
), and the

ground-state electron density, ρg(�r), can be obtained.
In this context, some important points of DFT are worth mentioning. First, the ground-

state density determines uniquely the external potential and therefore the Hamiltonian and the
ground-state wavefunction ψg . Second, it also determines the ground-state expectation value
of any observable, which in the case of the Hamiltonian is the ground-state energy, Eg . So
finally the ground-state density ρg(�r) determines the ground-state energyEg . Mathematically,
this is expressed by saying that the ground-state energy is a functional of the ground-state
density, Eg = E[ρg(�r)]. The third important point, essential for calculations, is that this
functional has the following variational property: for a fixed external potential the functional
evaluated for any density ρ(r) takes a value which is greater than or equal to Eg; in other
words, the ground-state density ρg(�r) minimizes the functional, and this minimum value is
precisely Eg . The fourth point is that if the functional is written as the sum of the energy of
interaction with the external potential plus the rest of the energy, then this second part is a
universal functional, which means that it does not depend on the external potential, i.e. it is
the same for atoms, molecules, liquids, and so on.

Summarizing, DFT states that in order to calculate the electronic ground-state energy
and density, one does not need the complicated antisymmetric ground-state wavefunction,
which depends on 3Ne spatial variables and Ne spin variables, but instead both of them can be
obtained by minimizing an energy functional, which can be written as

E[ρ(�r)] = Ts[ρ(�r)] + Eext[ρ(�r)] + EH [ρ(�r)] + Exc[ρ(�r)]. (16)

The terms represent, respectively, the electronic kinetic energy, Ts , of a non-interacting system
of density ρ(�r), the energy of interaction with the external potential created by the ions,

Eext =
∫

d�r ρ(�r)Vext(�r) (17)

and the classical electrostatic energy (Hartree term),

EH = 1

2

∫ ∫
d�r d�s ρ(�r)ρ(�s)|�r − �s| (18)

and also the exchange–correlation energy,Exc, which is just the rest of the energy, and includes
part of the true kinetic energy and other effects due to indistinguishability (exchange) and
correlation. Below we consider explicitly the two complicated terms of the functional, namely,
the exchange–correlation functional and the kinetic energy functional.

The exact expression for Exc is unknown, but several useful approximations have been
proposed. A widely used expression is the so-called local density approximation (LDA)

ELDA
xc [ρ(�r)] =

∫
d�r ρ(�r)ε(0)xc (ρ(�r)) (19)

where ε(0)xc (n) is the exchange–correlation energy density of a uniform electron gas of density
n, which is known through simulations [13] and further fittings [14,15]. Other more elaborate
approximations have been proposed [16–18], but here we will only consider those applications
where the LDA expression is used.

Contrary to the case forExc, it is possible to calculate exactly the kinetic energy functional
Ts . This is accomplished through the introduction of single-particle orbitals [19], in the so-
called Kohn–Sham representation of density functional theory (KS-DFT). The use of orbitals
somewhat complicates the simplicity of the original representation where just the electron
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density appears, i.e., the orbital-free density functional theory (OF-DFT). If one sticks to OF-
DFT, the exact functional form of Ts[ρ(�r)] is unknown, and therefore approximate expressions
must be used. We consider below the two approaches (KS and OF) separately.

3.2.1. Exact calculation of Ts: KS-DFT. It was shown by Kohn and Sham [19] that
minimizing E[ρ(�r)] while keeping Ne fixed, is equivalent to diagonalizing a one-particle
Hamiltonian

HKS = −1

2
�∇2 + Vext + VH [ρ(�r)] + Vxc[ρ(�r)] (20)

where VH(r) = ∫
d�s ρ(�s)/|�r − �s|, and Vxc are the functional derivatives of EH and Exc

respectively. The diagonalization leads to the eigenvalues εi and the orbitals ϕi(�r), from
which the ground state is constructed:

ρg(�r) =
∑
occ

|ϕi(�r)|2 (21)

where the sum runs over occupied states, which are the lowest-lying ones, up to the Fermi
energy. Finally, the kinetic energy that we were looking for is

Ts =
∑
occ

∫
d�r ϕ∗

i (�r)
(

−1

2
�∇2

)
ϕi(�r). (22)

It is important to notice that the eigenstates, and therefore the electronic density, depend on
the Hamiltonian, and in particular on the Hartree and exchange–correlation potentials, which
themselves depend on the density. So we are faced with a situation where a self-consistent
scheme is required. We also note that when a non-local pseudopotential between ions and
valence electrons is used, expression (17) for the external energy is not valid any more, and
has to be replaced with one where the orbitals appear explicitly.

3.2.2. Approximate calculation of Ts: OF-DFT. As already stated, the exact expression for
Ts in terms of ρ(�r) is unknown. However, it is considered [20] that the von Weizsäcker term

TW [ρ(�r)] = 1

8

∫
d�r |∇ρ(�r)|2/ρ(�r) (23)

is essential for a good description of the kinetic energy. It is the leading term for rapidly
varying densities and, furthermore, it is exact for one- and two-electron systems, and for
systems composed of one- or two-electron separated subsystems. Usually further terms are
added in order to reproduce correctly some exactly known limits. In the uniform-density limit,
the exact kinetic energy is given by the Thomas–Fermi functional:

TTF[ρ(�r)] = 3

10

∫
d�r ρ(�r)kF (�r)2 (24)

where kF (�r) = (3π2)1/3ρ(�r)1/3 is the local Fermi wave vector. In the limit of almost uniform
density, LRT is correct, with the response function corresponding to a non-interacting uniform
electron gas, i.e. the Lindhard function [21], χL(q, ρ0).

Recently, there has been renewed interest in the development of accurate kinetic energy
functionals, partly because of the advantages of the orbital-free ab initio simulations. Among
several proposals [22–26], we mention the expression proposed by Garcı́a-González et al [27]
which has been used in this work, although in a simplified version which is amenable to
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rapid evaluation through the use of fast Fourier transform (FFT) routines. We have used for
Ts = TW + Tβ

Tβ = 3

10

∫
d�r ρ(�r)5/3−2β k̃(�r)2 (25a)

k̃(�r) = (2k0
F )

3
∫

d�s k(�s)wβ(2k
0
F |�r − �s|) (25b)

where k(�r) = (3π2)1/3ρ(�r)β , k0
F is the Fermi wave vector corresponding to the mean electron

density ρ0, and wβ(x) is a weight function, determined by requiring the correct recovery of
both the LRT limit and the uniform-density limit. Note that k̃(�r) is obtained as a convolution,
which can be performed rapidly with the usual FFT techniques.

A detailed account of this functional will be published elsewhere [28], but we just mention
here that it is positive definite, and for a range of values of β, namely 0.5 < β < 0.566,
fulfils other useful mathematical requirements related to the finite character of the functional
derivative for small densities. In the applications we have used a value of β = 0.51.

3.3. Molecular dynamics for liquid metals and alloys

Three different classes of MD simulations for liquid metals and alloys will be considered
here. First, CMD calculations with interatomic pair potentials obtained from LRT; they will
be referred to as LRT-CMD simulations. Second AIMD calculations where the KS represent-
ation of DFT is used and they will be referred to as KS-AIMD simulations. Thirdly, AIMD
calculations where the OF-DFT is used, which will be called OF-AIMD simulations.

Most AIMD calculations performed to date have been KS-AIMD simulations. In this
type of simulations N ions are enclosed in a box of volume V with periodic boundary
conditions, the interaction between ions and valence electrons is described by means of non-
local pseudopotentials, the electronic ground-state energy is computed using KS-DFT with an
approximate Exc (usually LDA), the orbitals are expanded in plane waves compatible with the
periodic boundary conditions, and eitherHKS is diagonalized until self-consistency is achieved,
or E[ρ(�r)] is minimized imposing orthonormalization constraints on the orbitals, and finally
the forces are obtained from the gradients of the potential energy in order to move the atoms.
There is a third possibility where the ground state is not found exactly for each configuration
(only for the initial one), but instead it is updated via a time evolution governed by a coupled
ion–electron Lagrangian which also includes dynamic orbital orthonormalization constraints;
this is the Car–Parrinello approach [29], which, however, is not well suited for the study of
those systems where no gap exists between occupied and unoccupied electron states [30], as
is the case for metals.

Starting with the pioneering work of Madden and co-workers [31] several OF-AIMD
simulations have recently been performed for metallic systems. Now, N ions are enclosed in
a box of volume V with periodic boundary conditions, local pseudopotentials are used (in fact
must be used ) to describe the interaction between ions and valence electrons, the electronic
ground-state energy is computed using OF-DFT with approximate expressions for Ts and Exc

(usually LDA), the electron density (or sometimes its square root) is expanded in plane waves
compatible with the periodic boundary conditions, and E[ρ(�r)] is minimized imposing the
normalization constraint on the density (which must integrate to the number of electrons);
finally the forces are obtained from the gradients of the potential energy in order to move
the atoms.

In both KS-AIMD and OF-AIMD simulations, the minimization of the functional is
performed with respect to the coefficients of the respective expansions in plane waves. The
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number of coefficients (which are the variables for minimizing the energy) is very large,
especially in the case of KS-AIMD. For instance, in an early study of liquid Mg [32] with 90
ions, which means 180 valence electrons and 90 doubly occupied orbitals, and truncating the
expansion in plane waves at wave vectors corresponding to a kinetic energy of 12 Ryd (this is
the so-called cut-off energy), the number of complex coefficients representing the 90 orbitals
is around half a million. Moreover, imposing the orthonormalization constraints requires a
lot of computer time and scales very badly, O(N3), with the number of ions in the simulation
box. The situation with KS-AIMD can be briefly summarized by saying that this method
is extremely burdensome computationally; consequently most studies have dealt with static
structural properties and diffusion coefficients only. To our knowledge, there has been just one
study, on liquid Li near melting, which also evaluated collective dynamical magnitudes [33].
On the other hand, in OF-AIMD simulations the number of coefficients is much smaller,
because there is only one function (the electronic density) to be expanded, and moreover the
normalization constraint is almost trivial. Therefore, much less computer time is required and
the scaling with the number of atoms is also much better, O(N logN). Summarizing, although
OF-AIMD calculations are still computationally burdensome, the calculation of dynamical
magnitudes is feasible; in fact, there have already been a number of them [31,34], and later on
we will present several more. However, good approximate kinetic energy functionals are still
required as well as good local pseudopotentials. We have touched briefly upon the first issue
previously; we now focus on the second one.

4. Pseudopotential construction

We consider two basic methods for pseudopotential construction.
The first one is modelling, i.e. a model functional form is assumed with several parameters

to be fitted so as to reproduce some property, previously determined by either experiment or
from all-electron ab initio calculations. Among non-local models, we have already mentioned
the Heine–Abarenkov model potentials whereas in the case of local models we may cite the
well known empty-core pseudopotential (with one adjustable parameter) [35] or the recently
proposed evanescent-core pseudopotential (with two parameters) [36].

The second route to pseudopotential construction is the ab initio method, whose basic
idea is as follows. First, consider a ‘reference state’ for the atom that we are studying, which
is simple enough that one can compute accurately, via Kohn–Sham density functional theory
(KS-DFT), its electronic properties. Second, since the interest is in the valence electrons,
we eliminate all of those effects on the valence properties which are due to the presence of
core electrons; this step is called ‘pseudizing’ the valence properties. Third, consider what
the pseudopotential is going to be used for, and how it is going to be used. Usually it will be
used for the calculation of the ground-state energy of a complex system, probably composed of
many atoms. This calculation can be carried out using several different theoretical approaches,
for instance, KS-DFT, LRT, or OF-DFT. So the third step selects the appropriate theoretical
approach to use in the study of the complex system. Finally, replace our atom in the ‘reference
state’ by an effective potential, and apply the selected theoretical approach to calculate those
valence properties considered in the second step. The pseudopotential is that effective potential
which reproduces those valence properties.

Therefore, in the construction of the pseudopotential, three basic ingredients have to be
specified: (i) the reference state, (ii) the valence properties on which we are going to focus, and
(iii) the theoretical approach used in the study of the complex system. Below, we include two
examples of this procedure that have been applied in the literature. The first is the ‘standard’
construction of non-local pseudopotentials for KS-AIMD [37,38]. The second example is the
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neutral-pseudoatom (NPA) method for constructing local pseudopotentials to be used within
LRT in order to obtain effective interatomic pair potentials for simple metals [39]. Finally, we
propose the application of the previous procedure to the construction of local pseudopotentials
for OF-AIMD simulations.

4.1. Non-local pseudopotentials for KS-AIMD

The reference state is usually the free atom in its ground state. The valence properties
considered are the energies and the wavefunctions corresponding to valence electrons or/and
unoccupied states. These wavefunctions are pseudized, eliminating the oscillations near the
nucleus which are due to the orthogonality with the core wavefunctions of the same angular
momentum, l.

Finally, the theoretical approach to be used for the complex system is KS-DFT. Therefore,
for each valence wavefunction a pseudopotential is found that, when used with KS-DFT,
reproduces the same energies and pseudized wavefunctions as were constructed before. Now,
the pseudopotential will be different for each l, i.e., it will depend on the angular momentum:
a non-local pseudopotential.

4.2. NPA local pseudopotentials for simple metals

The environment of an atom in a metal is quite different from free space. Therefore it seems
more appropiate to use a reference state which closely resembles this environment, while being
simple enough that KS-DFT can still be applied to find the valence electronic properties.

Our reference state is the atom embedded in a uniform background (jellium) of density
equal to the mean electron density of the complex system (the metal at some specified
thermodynamic state), in which a spherical cavity has been made around the atom. This system
still has spherical symmetry, like the free atom, and the main complication is that now the
valence states are unbound, i.e., they are scattering states forming a continuum occupied up to
the Fermi energy. The valence property considered is the ‘displaced’ valence electron density,
n(r)—that is, the change in the electron density induced in the jellium due to the presence
of the atom and the cavity. This is pseudized again by eliminating the core-orthogonality
oscillations leading to nps(r).

Finally, the theoretical approach used for the complex system is LRT, and therefore we
find an effective potential that when inserted into the same jellium along with the cavity will
induce, within LRT, a displaced density equal to the pseudized one calculated previously, i.e.,
we use equation (13) to find vps(q) + vcav(q) from nps(q).

Now the pseudopotential is local and depends on the thermodynamic state, i.e., it is not
transferable and must be calculated according to the mean electron density of the system.

4.3. Local pseudopotentials for OF-AIMD

For the same reasons as were previously explained, we use as the reference state the atom-
in-jellium–cavity system and the valence property will also be the displaced valence electron
density, which is pseudized as above.

The theoretical approach used for the complex system is OF-DFT. Therefore, we must find
an effective potential that, when inserted into the jellium together with the cavity, will produce,
within the OF-DFT theory, the same pseudized displaced density as was computed previously.
Translated into formulae, it proceeds as follows. When the functional derivatives of the energy
functional are performed, the Euler equation for our pseudopotential in the jellium–cavity
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system is

µs(r) + Vext(r) + VH(r) + Vxc(r)− µ = 0 (26)

where each term is the derivative of the corresponding term in equation (16), namely,

µs(r) = µW(r) + µβ(r) (27)

corresponding to the von Weizsäcker term and the β-term in Ts respectively,

Vext(r) = vps(r) + vcav(r) + vjell(r) (28)

VH(r) =
∫

d�s ρ(s)/|�r − �s| (29)

with ρ(r) = ρ0 + n(r), and Vxc(r) is the exchange–correlation potential. All the magnitudes
depend on r only, due to the spherical symmetry. Inserting equations (27)–(29) into equ-
ation (26), we obtain an algebraic equation for the unknown vps(r) in terms of the known ρ(r),
whereas the constant µ is just an energy origin, which is fixed such that vps(r) decays to zero
for large distances.

5. Results and discussion

5.1. Liquid Li

During the last decade, there has been a quite thorough study of the static and dynamic
properties of liquid Li, by means of experimental, theoretical, and MD simulation methods,
including LRT-CMD, KS-AIMD, and OF-AIMD. Among the dynamical studies, we mention
the INS experiments of Verkerk and co-workers [40], the IXS experiments of Sinn et al [41],
and those of Scopigno et al [42]. On the theoretical side, González et al [43] computed an
empty-core pseudopotential [35] by fitting the results for the static structure factor to the neutron
scattering ones of Ruppersberg and co-workers [44], and also constructed an ab initio NPA
pseudopotential to be used within LRT. The interatomic pair potentials derived from the two
pseudopotentials were used to compute by theoretical methods [43,45] and by LRT-CMD [46]
methods the static and dynamic properties of liquid Li. Both pseudopotentials provided a
good description of the static properties, but comparison with INS experiments [40] and
IXS experiments [41] favoured the ab initio NPA pseudopotential over the model empty-core
one. Regarding AIMD simulations, Kresse [33] performed the only KS-AIMD simulations
(to our knowledge) where the dynamic structure factor was computed; Kresse used a non-
local pseudopotential of the so-called ultrasoft type [47], which is designed especially for the
elements of the first row of the periodic table and for transition metals. OF-AIMD simulations
have been carried out by Anta and Madden, who have studied the static and dynamic [34]
liquid structure; they used a kinetic energy functional which recovers the quadratic response
function of the non-interacting homogeneous electron gas along with a local pseudopotential
constructed by including in an approximate way the ionic structure of the liquid. The S(k, ω)
obtained compared rather well with the IXS data [41] for all wave vectors considered. In
contrast, the KS-AIMD results showed important disagreements in the small-k region, as the
values of S(k, ω) obtained were about three hundred times larger than the experimental and
the OF-AIMD ones.

Here, we present results of OF-AIMD simulations performed by using the simpler Ts-
functional of equation (25a) combined with a pseudopotential constructed as indicated in
section 4.3. We considered 205 particles enclosed in a cubic box of appropriate side such that
the number density is ρ = 0.044 512 Å−3, which is the experimental value at T = 470 K. The
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cut-off energy in the plane-wave expansion was 15 Ryd, which amounts to 15 900 coefficients.
The time step was 1 fs and the simulation lasted for 18 ps, after an initial equilibration of 5 ps.

Figure 1 shows the results obtained for the static structure factor, S(k), along with the
corresponding x-ray [48] and neutron [44] diffraction data. Our OF-AIMD results compare
rather well with the experimental ones, being closer to the neutron data. At small k-values,
our results are somewhat smaller than the neutron data, but still the agreement is rather good.
The extrapolation of S(k) to k → 0, using a quadratic expression S(k) = S(0) + ak2, leads to
an isothermal compressibility κT = S(0)/(ρkBT ) ≈ 0.8 × 10−10 Pa−1, to be compared with
the experimental value [49] of 1.02 × 10−10 Pa−1.
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Figure 1. Static structure factors, S(k), for the three metals studied. Note that the results for Mg
have been shifted upward by two units and those for Al by four units. The insets show the low-k
behaviour. Full lines: present OF-AIMD simulations. Open circles: x-ray diffraction data. Closed
circles: neutron diffraction data.

The diffusion coefficient, derived from the slope of the mean square displacement, is
D = 0.66 Å2 ps−1 (these units will be used throughout) which compares favourably with the
experimental value [50] of 0.64. The KS-AIMD simulations gave D = 0.66 whereas Anta
and Madden’s OF-AIMD simulations produced a lower value, namely D = 0.55. Finally, we
mention that LRT-CMD simulations with the NPA pseudopotential lead to D = 0.69.

From theF(k, t) obtained, the corresponding S(k, ω) are readily computed and in figure 2
we present the results for several k-values (k/kp = 0.29, 0.5, 1, and 1.41). We also include the
IXS data [41,42] as well as the OF-AIMD results of Anta and Madden. For small k-values, the
experimentalS(k, ω) exhibit well defined side peaks, which are typical of collective excitations,
and they persist up to k ≈ 2/3kp. For k = kp a typical increase in the height and narrowing
in frequency is found (the de Gennes narrowing) whereas for larger k a monotonic decay of
S(k, ω) is obtained, leading to the free-particle behaviour. Both sets of IXS experimental
data show good agreement, although the height of the peaks in Scopigno’s data is a somewhat
bigger. On the other hand, our OF-AIMD results show an overall qualitative agreement with
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Figure 2. Dynamic structure factors, S(k, ω), for liquid Li. Full lines: present OF-AIMD
simulations (k = 0.76, 1.25, 2.50, and 3.54 Å−1). Dashed lines: Anta and Madden’s OF-AIMD
results (k = 0.69, 1.26, and 3.51 Å−1). Open symbols: inelastic x-ray scattering data; circles:
reference [41] (k-values shown on the graphs); triangles: reference [42] (k = 0.70 and 1.28 Å−1).

experiment, although for small k-values our results underestimate the heights of the peaks,
especially the central one. Comparison with the OF-AIMD results of Anta and Madden shows
some discrepancies for small k-values which we ascribe to our use of a simpler Ts-functional;
however, for larger k-values both OF-AIMD results almost coincide.

From the positions of the peaks of the dynamic structure factor, denoted by ωm(k), or
from those of the spectra of the longitudinal current correlation function Cl(k, ω), denoted
as ωl(k), a corresponding dispersion relation is obtained, which is shown in figure 3. The
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Figure 3. Dispersion relations of longitudinal collective modes for liquid Li and Al. Triangles:
ωm(k); circles: ωl(k); lines: hydrodynamic dispersion (see the text).
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isothermal sound velocity, obtained from the above-calculated isothermal compressibility, is
4900 m s−1. By using the experimental ratio of specific heats, namely γ = 1.06 [49], this
leads to an adiabatic sound velocity cs = 5050 m s−1 which is somewhat higher than the
experimental one obtained from the adiabatic compressibility [49] cs = 4550 m s−1. This
is already apparent from figure 2 where the OF-AIMD side peak is somewhat shifted to the
right of the experimental one (although there is also a certain k-mismatch). The hydrodynamic
dispersion ω = csk (with the theoretical cs) is shown in figure 3, where a positive dispersion is
observed, i.e., the side peaks in S(k, ω) and Cl(k, ω) appear at frequencies higher than those
corresponding to the hydrodynamic regime, which is only recovered for rather small values
of k, not available in our simulations. Besides liquid Li, where the experimental positive
dispersion shows a maximum at k ≈ 0.55 Å−1 [41,42], this effect has also been experimentally
observed in other liquid metals near melting, such as Na [51], Rb [52], Cs [53], and recently
Al (see later).

5.2. Liquid Mg

In comparison with the case for the alkali metals, not much work, either theoretical or
experimental, has yet been performed on the liquid alkaline-earth metals. Concerning
the dynamical properties, we are only aware of LRT-CMD results (obtained with NPA
potentials) of Alemany et al [54, 55], who report values of the diffusion coefficients (for
Mg, D = 0.665 Å2 ps−1) and the intermediate- and self-intermediate-scattering functions. On
the experimental side, no data on the dynamic structure factors or diffusion coefficients have
yet been measured.

Restricting consideration to the static structural properties, several studies have already
been performed. Among them, we mention the KS-AIMD simulations of de Wijs et al [32] and
the OF-AIMD simulations of Anta et al [56], which show results for the static structure factor
and for the electron–ion correlation functions. In the present OF-AIMD simulations of liquid
Mg, at T = 953 K and ρ = 0.038 29 Å−3, we have used 205 particles, a time step of 1.5 fs,
and a total averaging time of 25.5 ps after equilibration. The cut-off energy was 42.25 Ryd and
the number of plane waves was around 85 000. Comparison with the KS-AIMD simulations
(which used a cut-off energy of 12 Ryd and 500 000 coefficients) shows clearly the important
memory savings achieved in OF-AIMD simulations, in spite of the larger cut-off required by
local pseudopotentials.

The results obtained for S(k), see figure 1, show good agreement with the experimental
x-ray data, even in the small-k region. The diffusion coefficient obtained within the OF-AIMD
simulations is D = 0.53 Å2 ps−1, which is somewhat smaller than the value from the LRT-
CMD simulations. The dynamic structure factors obtained are shown in figure 4, for several
k-values (at similar values of k/kp to those shown for Li). The overall behaviour of S(k, ω)
is very similar to that of liquid Li and other liquid metals, showing longitudinal collective
modes for small wave vectors, a de Gennes narrowing at kp, and a gradual transition to the
free-particle regime for higher k. In figure 4 we have also included the S(k, ω) obtained
from the LRT-CMD F(k, t) data of Alemany et al. It is observed that whereas the side peaks
obtained in LRT-CMD and OF-AIMD appear at the same frequency, the central peak is much
higher in LRT-CMD simulations; this is due to a marked diffusive behaviour in the LRT-CMD
F(k, t) results, which is absent (or very weak) in the OF-AIMD results. Nevertheless, the two
approaches lead to very similar dispersion relations. Moreover, since there are no experimental
data for γ , it is difficult to envisage the possible existence of a positive dispersion in liquid
Mg; however, the plot of wm(k)/k versus k exhibits a maximum (see figure 5) indicative of
some positive dispersion.
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Figure 5. The phase velocity, ωm(k)/k, of the longitudinal collective modes for liquid Mg.

In summary, the OF-AIMD and the LRT-CMD simulations give rather similar results for
the static structural magnitudes. However, the dynamic properties D and S(k, ω) as computed
from the two approaches are rather different. Unfortunately, the lack of experimental data for
the dynamical magnitudes prevents one from deciding which description is more accurate.

5.3. Liquid Al

Most studies of liquid Al have been performed using LRT-CMD with pair potentials derived
from either local [57] or non-local [58] pseudopotentials. There has also been one KS-AIMD
study [59] in which the static structure and the diffusion coefficient (D = 0.60 Å2 ps−1) were
obtained, and an OF-AIMD simulation [56] which focused just on static structural properties,
showing good agreement with the experimental structure factor of the liquid. Here we test the
ability of the method (though with a different Ts-functional and a different pseudopotential)
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to describe the dynamic structure of the system. We have considered a thermodynamic state
with T = 1000 K and ρ = 0.0524 Å−3, which is close to the triple point. We have used 205
particles, the time step was 1 fs, equilibration lasted for 10 ps, and averaging was performed
for another 36 ps (36 000 configurations). The cut-off energy was 30 Ryd which amounts to
about 85 000 plane-wave coefficients.

The OF-AIMD static structure factor obtained is shown in figure 1 together with the
neutron [60] and x-ray [48] diffraction data. Comparison between the two sets of experimental
data shows small differences in the region between 2 and 5 Å−1, with the OF-AIMD results
between the two sets, although closer to the x-ray ones. We note that LRT-CMD simulations
with a pair potential obtained from an NPA local pseudopotential are unable to reproduce the
experimental S(k), showing a main peak displaced to the right of the experimental one [61].

The diffusion coefficient obtained is 0.55 Å2 ps−1, which is similar to the KS-AIMD
result; however, there are no experimental data to compare with. Concerning the dynamic
structure factor S(k, ω), we mention the recent IXS measurements performed by Scopigno
et al [62], who report the quantum dynamic structure factor (which includes the detailed
balance condition) not deconvoluted from the experimental resolution function. In order to
compare our classical OF-AIMD S(k, ω) with the experimental ones, we have convoluted
them with the resolution function and applied the correction due to detailed balance [62]. The
comparison is shown in figure 6. The general shape of S(k, ω) is qualitatively well reproduced,
for the three wave vectors considered. The central peak and the tails are well reproduced
whereas some discrepancies appear as regards the positions of the side peaks, which appear at
lower frequencies in the OF-AIMD simulations. In fact, the S(k, ω) show well defined peaks
for k-values up to approximately 1.6 Å−1, which is around 3/5 of kp, a limit similar to that

−100 −50 0 50 100
ω  (ps

−1
)

0

0.2

0.4

0

0.2

0.4

S
(k

, ω
) 

 (
10

−
3  p

s)

0

0.5

1

k=0.42 Å
−1

k=0.9 Å
−1

k=1.38 Å
−1

Figure 6. Quantum dynamic structure factors of liquid Al. Symbols and dashed lines: IXS results
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found for other liquid metals. The dispersion relation is plotted in figure 3. On extrapolating
the OF-AIMD structure factor to k = 0 and taking the experimental value γ = 1.25 into
account [63], the OF-AIMD adiabatic sound velocity is 4850 m s−1, in good agreement with
the experimental one, namely 4800 m s−1. Figure 3 shows a positive dispersion, as in the case
of liquid Li; a similar behaviour, though more marked, is also exhibited by the IXS data of
Scopigno et al [62] with a maximum at about 0.45 Å−1.

5.4. Liquid LiNa

The Li–Na liquid alloy has attracted much attention because it is a typical phase-separating
system. The phase diagram is dominated by a region of two immiscible liquids and the phase-
separation curve shows a consolute point located at T ≈ 577 K and composition xLi ≈ 0.64;
this is close to the ‘zero alloy’ composition (xLi ≈ 0.61) for which the total static structure
factor, S(k), reduces to the concentration–concentration partial structure factor Scc(k), i.e.
S(k) = Scc(k)/xLixNa, because of the negative neutron scattering length of the 7Li isotope.
The total S(k) has been measured for the zero alloy at several temperatures and also for other
concentrations [64] while INS experiments have been performed for the zero alloy [65] only.
At the zero alloy composition the experimental S(k) are dominated by a strong small-angle
scattering, which is a typical characteristic of a phase-separating system, and the oscillations
of the S(k) beyond the small-angle region are extremely small, with a characteristic ripple
around k ≈ 2.2Å−1.

The simultaneous reproduction of the two features has been an objective since the very
early theoretical and CMD simulations of the system [66–68], where either one of the
features was obtained but the other was either absent (in the case of the double peak) or
severely underestimated (in the case of the small-k divergency). Recently Canales et al [69]
have succeeded in obtaining both features by using LRT-CMD with NPA pseudopotentials
constructed ab initio. Also, they calculated the velocity autocorrelation functions and
mean square displacements, leading to diffusion coefficients at T = 590 K with values
DLi = 1.18 Å2 ps−1 andDNa = 1.28 Å2 ps−1. The same NPA pseudopotentials have also been
used by Anento et al [70] to study some dynamic properties by means of a simple theoretical
model.

The zero alloy has also been investigated by means of KS-AIMD simulations. Hoshino
and co-workers [71] used 100 atoms with an energy cut-off of 10 Ryd, and their S(k) seems
to reproduce the main experimental features, although the results are extremely noisy. Also,
Costa Cabral and Martins [72] have used 108 atoms with an energy cut-off of 9 Ryd and
similar non-local pseudopotentials, and the properties were obtained by averaging over 300–
400 configurations. Their S(k) qualitatively reproduces the experimental one, although
quantitative differences appear over the whole k-region (see figure 7). They also report
diffusion coefficients, DLi = 0.80 Å2 ps−1 and DNa = 0.91 Å2 ps−1, which are somewhat
lower than the LRT-CMD ones, but very similar to each other.

Here we present results of OF-AIMD simulations for the zero alloy at T = 590 K and
ρ = 0.032 18 Å−3. The simulation was performed with 600 particles, the cut-off energy was
18 Ryd amounting to 84 500 plane-wave coefficients, and it lasted for 20 000 configurations
(50 ps). Figure 7 shows the Bhatia–Thornton partial structure factors obtained (number–
number SNN(k), concentration–concentration Scc(k), and number–concentration SNc(k)), and
the total neutron weighted structure factor S(k). For comparison, we include the LRT-CMD
results of Canales et al [69] and the KS-AIMD results of Costa Cabral and Martins [72]
along with the experimental data. The present results show an excellent agreement with
experiment, improving on the KS-AIMD results and also the already good LRT-CMD results.
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Figure 7. Bhatia–Thornton partial structure factors and total neutron weighted structure factors
of liquid Li0.61Na0.39 at T = 590 K. Full lines: OF-AIMD results. Open circles: experimental
neutron diffraction data. Dashed line: KS-AIMD results [72]. Long-dashed line: LRT-CMD
results [69]. The insets show the low-k behaviour (full lines) and the extrapolation to k = 0 (dotted
lines).

The insets show an extrapolation of the data to k = 0, obtained by assuming an Ornstein–
Zernike formula of the type Sαβ(k) = Sαβ(0)/(1 + ξ 2k2). The values obtained from the fits
were SNN(0) = 0.75, SNc(0) = 1.05, Scc(0) = 1.96, and ξ = 3.33 Å, which is about 1/8 of
the side of the simulation box.

The values of the diffusion coefficients are DLi = 1.22 Å2 ps−1 and DNa = 1.15 Å2 ps−1,
which are similar to those derived from the LRT-CMD results of Canales et al [69], although
now DLi is slightly larger than DNa. We have also computed the product of Scc(0) and the
interdiffusion coefficient from the autocorrelation function of the concentration current [73],
obtaining that Scc(0)Dint = 0.44 Å2 ps−1; when compared with Darken’s semiempirical
expression, x1x2(x2D1+x1D2) = 0.28 Å2 ps−1, it shows that interparticle velocity correlations,
ignored in Darken’s expression, are indeed important in this system. Using the value of Scc(0)
previously obtained, we end up with Dint = 0.23 Å2 ps−1.

Figure 8 shows, for several k-values, the OF-AIMD partial intermediate-scattering
functions obtained along with the LRT-CMD results of Anento et al [70]. For all k-values,
a marked diffusive behaviour is clearly observed and, superimposed on it, a weak oscillating
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structure characteristic of a propagating mode. The decay of the functions is somewhat slower
than in the LRT-CMD simulations, but the overall picture is the same. The partial dynamic
structure factors obtained by Fourier transformation into the frequency domain confirm the
appearance of peaks in SLiLi(k, ω) up to about 1.7 Å−1, and in SNN(k, ω) up to 1.4 Å−1

as already suggested by the LRT-CMD simulations [70]. On the other hand, both Scc(k, ω)

and the total neutron weighted Stot(k, ω) show a monotonic decay. In the hydrodynamic
limit, the halfwidth at half-height of Scc(k, ω) is given approximately by Dintk

2, if coupling
to temperature fluctuations is ignored [73]. In figure 9 we have plotted this halfwidth as a
function of k2 and we do indeed find that a linear regression is possible, but the slope takes the
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value 1.24 Å2 ps−1, which is much larger than Dint. This means that either the hydrodynamic
regime has not yet been reached for the smallest k-value considered (0.52 Å−1) or that coupling
to temperature fluctuations is rather important for this alloy.

6. Conclusions

We have described how the dynamic properties of liquid metals can be evaluated starting
from the pseudopotentials describing the interactions between valence electrons and ions.
Moreover, the pseudopotentials can be constructed from first principles, using as input the
atomic number and valence of the ions as well as the thermodynamic state of the system. The
procedure is long and some approximations must be invoked, but in fact information on the
static and dynamic properties can be obtained from the very basic atomic information. The
essential approximation in the whole process is the calculation of the potential energy of the
system. Linear response theory is a well established technique for liquid metals, and LRT-
CMD simulations have been successfully applied to the study of many systems, although only
recently has the LRT been combined with ab initio pseudopotentials (usually, model potentials
were used). But LRT is a perturbative theory and therefore has limitations. Density functional
theory provides a useful and more accurate alternative. In the Kohn–Sham formulation only the
exchange–correlation energy has to be approximated, whereas in the orbital-free formulation,
an (approximate) expression for the kinetic energy must be supplied too. However, as shown
in this paper, the orbital-free representation allows a wider study of dynamical properties of
different systems. We have focused on molecular dynamics techniques in order to obtain the
static and dynamic properties of the liquid, but theoretical approaches also exist such as the
mode-coupling theories developed recently [5, 74].

We stress that according to our view, the construction of the pseudopotential is closely
connected with the theoretical framework used for the calculation of the potential energy
of the system. This means that different kinetic energy functionals will lead to different
pseudopotentials, even if they are developed from the same atomic pseudized valence
properties. Concerning the results presented in this paper, we stress the reasonable agreement
with the available experimental data, although some discrepancies remain. For instance, the
positive dispersion relation of liquid Al is underestimated relative to the experimental results.
Nevertheless, these results are rather promising and should prompt the development of more
accurate kinetic energy functionals (which would lead to somewhat different pseudopotentials).

We end by remarking that the field of pseudopotential construction is, in fact, far from
closed. We have seen that improvements are possible within the OF-DFT framework, which
forces the use of local pseudopotentials. However, even the construction of non-local pseudo-
potentials remains open, at least regarding the calculation of dynamic properties of liquids,
as is shown by the factor-of-300 error in the description of S(k, ω) for liquid Li for small k
obtained in the KS-AIMD simulations, even though S(k) is accurately reproduced.
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[27] Garcı́a González P, Alvarellos J E and Chacón E 1996 Phys. Rev. B 53 9509
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